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1. Introduction

Recent advances in Very Large Scale Integration (VLSI) circuit technology have
made it possible to wire tens of thousands of transistors onto a single chip. In the
near fututre, it is expected that fabrication of chips containing millions of transistors
will be commonplace [MC80]. In order that this massive computational resource be
effectively utilized, theoretical researchers have been actively trying to develop
models and methods for designing VLSI chips. Most of these efforts have been
directed towards producing network layouts which minimize the amount of area
consLmed by the chip. This is due to the fact that small chips are usually much
cheaper and more reliable than large chips.

Of the several mathematical models that have been proposed for VLSI
computation, the simplest and most widely accepted is the Thompson grid model
[T79, T80]. The grid model of a VLSI chip is quite simple. The chip is presumed to
consist of a grid of horizontal and vertical tracks which are spaced apart by unit
intervals. The nodes of the network are viewed as points and are located only at the
intersection of grid tracks. Wires are routed through the tracks in order to connect
pairs of nodes. Although a wire in a horizontal track is allowed to cross a wire in a
vertical track (without making an electrical connection), pairs of wires are not
allowed to overlap for any distance or to overlap at corners (i.e., they cannot overlap
in the same track). Further, wires are not allowed to overlap nodes to which they are
not linked. (The routing of wires in this fashion is also known as layer per direction
routing and Manhattan routing.)

The area of a layout in the grid model is defined to be the product of the number
of horizontal tracks and the number of vertical tracks which contain a node or wire
segment of the layout. For example, the layout shown in Figure 1 has area 15.

Figure 1: A layout which has area 15.
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It is easy to construct a layout for the graph shown in Figure 1 which has area 9,

implying that the layout in Figure 1 is not optimal. In general, however, it is very
c difficult to tell if a layout is optimal or even close to optimal. This is due to the fact

that relatively little is known about proving lowcr bounds on the area needed to lay
out a graph. Past research in this area has centered on the related problem of Finding
good lower bounds on the bisection width of a graph [T79, T80, V80, LS811. (The
bisection width of a graph is the minimum number of edges which must be removed
in order to partition the graph into two nearly-equal-sized subgraphs.)

The relationship between bisection width and layout area was first noticed by
Thompson ['P791 who showed that the layout area of a graph with bisection width B
is at least U(B2). Since that time, Thompson [T80], Vuillemin [V801 and iipton and
Sedgewick ILS811 have all shown how to use information theoretic arguments in
order to find good lower bounds on the bisection width of a graph and thus on its
layout area. While these methods are usefil in finding good lower bounds on the
layout area of some networks (such as the shuffle-exchange graph), they have not
been of use in resolving two of the key open questions in VI.SI theory; ,namely,

1) "How much area is needed to lay out a planar graph?," and

2) "How much area is required to lay out a graph with an O(x 11-')-separator?."
(An N-node graph is said to have an J(x)-scparator if it can be partitioncd into
two nearly-equal-sized subgraphs G, and G7 such that at most fN) edges link

* GI to G2 and both Gi and G2 have Ajx)-separators.)

The planar graph question is particularly important since (as we will show in
Theorem 2) the layout problem for an arbitrary graph can be reduced to that for a
planar graph. Although no nontrivial lower bounds are known for either problem,

• q progress has been made on the corresponding upper bounds. In particular, ILeiserson
[L80a] and Valiant [V811 have shown how to lay out any N-node graph which has an
O(xl 2)-sep*arator in at most O(Nlog2N) area. As Lipton and Tarjan [I.T80] have
proved an O(x tl")-separator theorem for the class of planar graphs, their O(Nlog2N)
area Iayout technique also works for planar graphs. Although it is suspected that
better layout techniques exist for planar graphs, none have yet been found.

In this paper, we pursue an entirely different strategy in developing new lower
bound techniques for VLSI. Whereas previous researchers have been concerned
primarily with the bisection width of a network, we shall be concerned with its
crossing number and wire area. The crossing number of a graph is the minimum
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number of pairs of edges which must cross in any planar drawing of the graph. The
wire area of a graph is the minimum amount of wire which is needed to lay out the

graph in the Thompson grid model [T79, T801. Clearly, the crossing number and
wire area are lower bounds on the layout area of any graph. In fact, we will show in

Theorem 1 that

U(B2) < C+N < W < A

for any N-node graph with bisection width B, crossing number C, wire area W and
layout area A.

The preceding inequality implies that every lower bound technique for bisection
width can be translated into a lower bound technique for crossing number and wire

area. Thus nothing is lost by forgetting about bisection width and concentrating ones

efforts on finding good lower bounds for the crossing number and wire area of a

graph. In fact, much can be gained. For example, we will use such techniques in
this paper to construct

1) an N-node planar graph which has layout area O(NlogN) and

2) an N-node (nonplanar) graph with an O(xl/ 2)-separator which has layout area

O(Nlog2N).

The first result demonstrates that not all planar graphs can be laid out in linear
area, thus disproving a popular conjecture. The second result indicates that
Leiserson and Valiant's O(Nlog2N)-area layout technique for graphs with O(xl'2)-

separators is optimal at least some of the time and thus cannot, in general, be

improved.

There has also been a great deal of interest lately in the problem of determining

the length of the longest wire in any layout of a network on a chip [BL81, CM81,

PRS81]. Bhatt and Leiserson [BL81], in particular, have found some nice upper
bounds for this problem. Very little has been accomplished in the way of lower

bounds, however, since bisection width arguments do not seem to be applicable to

edge length considerations. Crossing number and wire area arguments, on the other
hand, are very helpful in proving good lower bounds on maximum edge length. In

this paper, we will use such arguments to find

1) an N-node planar graph for which any layout must have a wire of length

O(N"12/log 11 2N),
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2) an N-node (nonplanar) graph with an O(x1"2)-separator for which any layout
must have a wire of length O(N1121ogN/loglogN) and

3) an N-node graph with an O(x1 't/)-separator for which any layout must have
a wire of length e(N'-") for any r>3.

The latter two results achieve the known upper bounds for maximum wire length.
They also indicate that some wires in layouts of certain graphs must be very long
(possibly as long as the length of the entire layout).

For easy reference, we have summarized our new lower bounds along with the
previously known upper and lower bounds in the Tables 1 and 2. The nontrivial
upper bounds in Table 1 are due to'Leiserson [L80a and Valiant [V811 while those in
Table 2 are due to Bhatt and Leiserson [BL81]. The previously known lower bounds
are, for the most part, trivial. The only exception is the N2 area lower bound in
Table I which is due to Thompson (T80]. In each table, the upper bounds apply to
all graphs while the lower bounds pertain only to a special class of graphs. (For
convenience, we have left out the O( ) notation on the upper bounds and the 2()
notation on the lower bounds.)

Table 1

Area Bounds

previous our upper
separator lower bound lower bound bound

x1, a < 1/2 N N

x, a = 1/2 N Nlog 2N Nlog2N

x , a > 1/2 N2a  N2"

(planar) N NlogN Nlog 2N

44
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Table 2

Maximum Edge Length Bounds

previous our upper
separator lower bound lower bound bound

xO a < 1/2 N1'2/logN N112/IogN

xa, a = 1/2 N'1 2/IogN N 1"l1ogN/loglogN N112logN/loglogN

xa, a > 1/2 Na/logN Na Na

(planar) N112/IogN N112/log"' 2N N"21ogN/loglogN

The remainder of the paper is organized as follows. In section 2, we describe the
networks for which we will later prove lower bounds. As these networks are new
and interesting in their own right (they include new networks for fast sorting and
matrix multiplication), we devote a fair amount of space to each. In section 3, we
describe the general relationship between crossing number and layout area. We also
prove crossing number and maximum edge crossing lower bounds for the nonplanar
networks described in section 2. In section 4, we generalize the methods developed
in section 3 and prove wire area and maximum edge length lower bounds for a
variety of networks. We conclude in section 5 with several remarks, related results
and open questions.

Throughout, we limit our discussion of graphs to those with bounded node
degree and of layouts to those in the Thompson grid model. Neither constraint is
crucial to our results, however. For example, all of the lower bound proofs work
equally well for the Lipton-Sedgewick [LS81] (or any similar) model of chip design.

2. Network Constructions

(2a) The 2.dimensional Mesh of Trees

The 2-dimensional nxn mesh of trees M2 , is defined when n is a power of 2 as
follows. Starting with an nxn matrix of nodes and adding nodes wherever necessary,
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K
construct a complete binary tree in each row and column of the matrix. The trees
should be constructed so that

1) the leaves in each tree are precisely the nodes in the corresponding row or
column of the original matrix, and

2) the subgraph induced on the nodes in each quadrant is M2,nl 2

For example, we have drawn M 44 in Figure 2. The nodes in the original 4x4
matrix are represented by dots. The nodes which were added in order to form row
trees are drawn as small triangles while those added to fonn column trees are shown
as small squares. Solid lines indicate row tree edges while dashed lines indicate
column tree edges.

Si i
/ I / I

.iI'

I eI I
".I I I I

" I

* q Figure 2: The 4x4 mesh of frees M24.

Notice that if we were to remove the roots of the row and column trees of M2,4

4I and the edges incident to them, we would be left with 4 copies of M2.2 , one in each
quadrant. In general, if we were to remove the nodes and edges in the top k levels
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of the binary trees in M2,n , we would be left with 22k copies of M2 -k2. . This

important property of meshes of trees is used extensively in the proofs of Theorems

3, 4, 5 and 8.

CoMIputationally, the nxn mesh of trees is a very powerful network. Among

other things, it can be used to

1) multiply a fixed nxn matrix by in different n-vectors in m+21ogn (word)

steps,

2) sort a list of n in-bit words in 2mn+51ogn (bit) steps, and

3) link n input terminals to n output terminals in any order in logn (bit) steps.

The processors and algorithms needed for these operations are extremely simple.

For example, in order to sort a list of n mn-bit words, each node need only contain a
few and and or gates. The algorithm for this operation proceeds as follows. Starting

at the roots, the ilh word to be sorted is input (bit by bit) into the ith row and

column trees for each i, I<i<n. The bits are passed down each tree so that after

logn steps the leading bit of the ith word has reached each leaf of the iih row and

column trees. Comparison of the ith and jth words for all i and j can then proceed

simultaneously. After at most in additional steps, the (ij) leaf has decided whether

the iih word is smaller or larger than the jth word. Ties are broken arbitrarily (e.g.,

depending on the values of i and J). Once this is done, each leaf transmits a 0 or a I
to its column tree father depending on whether its column tree word was smaller or

larger than its row tree word. Each column tree then sums these values in order to

determine the position of its word in the final ordering. (If the sum is carried out bit

by bit starting with the least significant bit, this process takes 21ogn steps.) This

information is then used to mark a path in each column tree from the root to that
leaf which is also in the appropriate row tree (again taking 21ogn steps). Once this is

done, it is a simple matter to transmit the bits of the ith word along the unique path

from the ith column tree root to the appropriate row root for each i. As the paths

are all pairwise disjoint, this process takes only m+21ogn steps.

The algorithm just described sorts a list of n in-bit numbers in 2m+ 7logn steps.

It is a simple exercise to speed up the algorithm to obtain the 2m +51ogn step bound.

We should also point out that this algorithm is similar to the one described by

Muller and Preparata in [MP75]. The VLSI implementation of the algorithm is new,

however, and far superior to many of the VLSI sorting algorithms discussed by

Thompson in his recent survey paper [T811.
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It is easy to show that the nxn mesh of trees has N=3n2-2n nodes, bisection

width n=O(N/2), and an O(xl/ 2)-separator. In TheoreirAs 3, 5 and 8 (respectively)

we will show that any layout for the N-node 2-dimensional mesh of trees has

1) at least (U(NlogN) crossings,

2) at least Qf(Nlog2N) wire area, and

3) some edge of length at least Si(N 1121ogN/IoglogN).

(it is worth noting that all of these bounds are tight.)

(2b) The rdiniensional Mesh or Trees

The 2-dimensional mesh of trees can be easily generalized to higher dimensions.

For example, the 3-dimensional nxnxn mesh of trees M3,n can be constructed as

follows. Starting with an nxnxn cube of nodes and adding nodes wherever necessary.

construct a set of n2 complete binary trees in each of the three dimensions of the

cube. As before, the trees should be constructed so that the leaves are precisely the

nodes of the original cube and so that the subgraph induced on each octant of nodes

is M3,1 2 .

The nxnxn mesh of trees is also a very useful network for parallel computation.

For example, it can be used to compute the products of m pairs of nxn matrices in

m+2ogn (word) steps. The algorithm and processors needed for this operation are

quite simple. The algorithm proceeds as follows. At each time step, a pair of

matrices is entered into the network via the roots of the trees in two of the

dimensions (one dimension for each matrix). The entries are passed down through

the trees so that after logn steps, the leaf in the (r,s,t) position of the cube contains

the (r,s) entry of the first matrix and the (st) entry of the second matrix for each r,s

and t. All n-? multiplications can then be performed simultaneously. The entries of

the product matrix are then calculated by summing the values of the leaves of each

tree in the third (previously unused) dimension. This process takes an additional
logn steps. As the network is easily pipelined, it is clear that the total computation

time is just m+21ogn (word) steps.
A simple counting argument reveals that M3 .n has N= 4n3-2,12 nodes for each n

and that the class of such graphs has an O(x2 3)-separator theorem. Thus the N-

node 3-dimensional mesh of trees can be laid out in O(N4/- )=O(n4) area. As the

the bisection width of the network has size O(N2 -), we can conclude that the layout

8



area is precisely O(N 4 3). At the same time, we can also observe that the network

nearly achieves the optimal AT2 bound for matrix multiplication [T791. AILhough
Preparata and Vuillemin [PV80] have already found an optimal network for fast
matrix multiplication, it appears that M3.n is much simpler and far easier to program.

Our primary interest in the higher dimensional meshes of trees is not in their

computational power, however. We are interested more in the fact that all layouts
for such graphs must have very long edges. In fact, we will show in Theorem 4 that
any layout for the N-node r-dimensional mesh of trees must have an edge of length
O(N' /"') for any N and r>3. It is not difficult to show that the r-dimensional mesh
of trees has an O(x-1 //)-separator and thus that such edges are (Lip to a constant) as
long as the side length of any optimal layout.

(2c) The Tree or Meshes

r The tree of meshes is similar to the 2-dimensional mesh of trees in that it
combines the structure of a mesh with that of a complete binary tree in a natural
way. Unlike the 2-dimensional mesh of trees, however, the tree of meshes is a planar
graph. It is formed by replacing each node of a complete binary tree with a mesh
and each edge by several edges which link the meshes together. More precisely, the
root of the binary tree is replaced by an nxn mesh (where n is assumed to be a power
of 2), its sons are replaced by n/2 x n meshes, their sons are replaced by n/2 x n/2
meshes, and so on until the leaves are replaced by lx meshes. In the place of each
right edge of the binary tree (i.e., one which links a node to its right son), we link the
rightmost column of nodes in the mesh corresponding to the father to the topmost
row of nodes in the mesh corresponding to the right son. Similar replacements are
made for left edges of the binary tree. In both cases, the connections are made so as
to preserve the column and row order of the nodes and to insure that the resulting
graph is planar. A simple counting argument reveals that the resulting graph (which
we call the nxn tree of meshes T,,) has N=2n2logn+n 2 nodes. For example, we

have drawn T4 in Figure 3.

The tree of meshes is a particularly interesting planar graph since it can embed
arbitrary planar graphs much more efficiently than can the ordinary mesh. For
example, it is not known how to embed an arbitrary planar graph in less than an
O(Nlog2N)-node mesh. As we show in our thesis [L81a], however, any N-node
planar graph can be embedded in an O(N/ogN)-node tree of meshes. Thus t,e tree

9
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Figure 3: The 4x4 tree of meshes T4.

of meshes is an excellent candidate for a planar graph which cannot be laid out in
linear area. In fact, we will show in Theorem 6 that the N-node tree of meshes has

* layout area r2(NlogN).

The tree of meshes can also be used to embed many nomplanar graphs which
have O(xl' 2)-separators. Of particular interest here is the fact that M, , can be
embedded in T2. for any n. In order to construct such an embedding, we first
embed (recursively) four copies of M2..12 in four copies of T, (one in each). Next.
we embed the roots of MZn in the 2n x 2n mesh of T2.. The embedding of M2,n
is completed by using the n x 2n meshes of T2,, as switching networks to link the
roots of M 2,n to its four subgraphs M2.,V2 (each of which is already embedded in a
copy of Tn).

As an example of the procedure, we have included the embedding of l2.4 in T8

in Figure 4. The embedding has been drawn as though it were constructed as part of
a larger embedding (say, of M2.8) in order to illustrate the recursive nature of the
embedding algorithm. In addition, we have drawn the nodes and edges of M2,4 as
they appear in Figure 2. For clarity, we have represented the nodes of T8 as
pinpoints and omitted its edges altogether. (For a more complete description of the
embedding algorithm, we again refer the reader to [L8la].)

10
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As we will show in Theorem 5, any layout for M2,,, requires (Z(n2log2n) area.
Thus it is easy to see that any layout for T2n also requires fZ(n2log2n) area.
Equivalently, any layout for the N-node tree of meshes requires at least Q~(NlogPO)
area. (it is worth noting that an O(NlogN)-area layout for the N-node tree of meshes
can, in fact, be- constructed by expanding the standard H-tree layout for binary trees.)
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(2d) The Augmented Tree or Meshes

In [L8Ia, we show that the maximum edge length of the N-node tree of meshes
is O(IogN). By slightly modifying the graph, however, it is possible to increase the
maximum edge length dramatically. The basic idea is to add a complete binary tree
with n2 leaves to the nxn tree of meshes so that the leaves of one are linked in a one-
to-one fashion to the leaves of the other. It is important that the attachments

*between the two graphs be made s6 that the resulting graph (which we call the nxn
augmented tree of meshes Ta') is planar. For example, we have drawn the 4x4
augmented tree of meshes in Figure 5.

trie of mehe

I"

bi" tree

Figure 5: The 4x4 augmented tree ofmeshes T4
9.

1, 1 2



It is easily seen that the augmented tree of meshes has, up to a constant, the same

bisection width, separator, layout area and number of nodes as does the original tree

of meshes. By adding the binary tree, we have simply decreased the distance (i.e.,

the length of the shortest path) between any two leaves of the tree of meshes. In

section 4, we will show that any layout of the N-node tree of meshes must have two

leaves which are spaced at least 7(N"21og t12N) apart. We will thus be able to

conclude that the maximum edge length of the Nnode augmented tree of meshes is

at least 12(N 112/logt/2N). Using arguments similar to those found in [BL81], it can
be shown that this bound is tight

3. Crossing Number Arguments

(3a) General Results

We first demonstrate the power of the crossing number as a general lower bound
technique for layout area.

Theorem 1: If G is an N-node graph with crossing number C and bisection width
B, then C+N > (B2).

Proof- Let D be a drawing of G in the plane with C crossings. Replace each
crossing of D with an artificial node. Call the resulting graph G' and note that it has

precisely C+N nodes. Using the weighted version of the Lipton-Tarjan planar
separator theorem [LT80], it is possible to bisect the real nodes of G' (by assigning
weight 1 to the real nodes and weight 0 to the artificial nodes) without cutting more

than O((C+ N)11 2) edges. After replacing the artificial nodes with their original edge

crossings, it becomes apparent that we have, in fact, constructed an O((C+N)t//)
bisection for G. Squaring, we find that C+N > 12(B 2) [

Using a similar proof technique, we can show that the crossing number is also
close to an upper bound for the layout area of a graph. In fact, should a really good

layout algorithm for planar graphs be found, then the following result could become

useful in laying out arbitrary graphs.

Theorem 2: Given an optimal drawing D for an N-node graph G with crossing
number C. it is possible to construct a layout for G with area at most

O((C+N)Iog 2(C+N)). Should a procedure be found which lays out an arbitrary
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N-node planar graph in A(N) area, then we could construct a layout for G with area at

most O(A(C+ N)).

Proof- As in the proof of Theorem 1, we replace each edge crossing of D with an

artificial node. The resulting graph G' has C+N nodes and is planar. Using the
methods developed by Lipton and Tarjan [LT80] and Leiserson [L80a], G' can be

laid out in O((C+N)Iog 2(C+N)) area. It is then a simple matter to replace the
artificial nodes with their original edge crossings to obtain the desired layout for G.

Alternatively, should an A(N)-area planar graph layout procedure be discovered, we

could construct an O(A(C+N))-area layout for G 3

As we have just seen, the idea of replacing edge crossings with artificial nodes is
simple but powerful. Jai-Wei and Rosenberg have also employed this strategy in
their work with embeddings of graphs in binary trees [JR81].

* (3b) Specific Lower Bounds

From Theorem 1, we know that crossing number arguments can give good lower
bounds on the layout area of many graphs. For example, we could simply
reformulate the techniques developed by Thompson T79, T801 and others [V80,

LS8l in terms of crossing numbers. Of much greater interest, however, is the fact
that there are also several purely combinatorial techniques for proving crossing
number lower bounds. (For example, see Kleitman's work 1K701 and our thesis
[L8lal.) In what follows, we will develop a new procedure for proving crossing
number lower bounds in order to show that the crossing number of the N-node 2-

dimensional mesh of trees is at least U(NlogN). We will also show that any drawing
of the N-node r-dimensional mesh of trees contains an edge which crosses at least
Q (Nl ' / r) other edges.

Our results require the following standard result. For completeness we have
included one of the many proofs from [K701.

Lemma 1: The crossing number of KA,, the complete graph on N nodes, is at least
N(N-IXN-2XN-3)120 for N5.

Proof- Let D be a drawing of KN in the plane with the smallest possible number

of crossings C(N). We may assume that no pair of edges which cross in D are
incident to a common node. Otherwise, it would be possible to produce a drawing

14.



D' for KN with C(Qr- crossings by exchanging the parts of the crossing edges
which lie between the common node and the point of crossing. This would
contradict the mininality of C(N).

Consider the N subdrawings of D obtained by deleting one of the nodes and all
of the edges incident to it. Note that each crossing of D appears in precisely N-4 of
the subdrawings. (A crossing does not appear in any of the 4 subdrawings which
correspond to the deletion of a node incident to an edge of the crossing.) Since each
of the subdrawings is a drawing of KN.), each must have at least C(N-I) crossings.
Thus (N-4)C(N) > NC(N-I) . Applying the inequality recursively and noting that
C(5)=l, we can conclude that

C(N) [N/(N-4) [(N-I)/(N-5)I...[6/2]

N(N-IXN-2)(N-3)/120 for N>5 13

Theorem 3: The crossing number of the N-node 2-dimensional mesh of trees is at
least (NlogN).

Proof- As before, let M2., denote the 2-dimensional mesh of trees (where n is a
power of 2). We will show that the crossing number of Al2,, is at least

(n21ogn - 121n 2 -+ 121n)40 for all n>1.

Since M2,n has N=O(n2) nodes, this will be sufficient to prove the desired result.

The proof consists of two steps. In the first, we show how to construct a drawing
of K12 from any drawing of M2,n by tracing over the edges of M2., . We then apply
Lemma I to conclude that there are a large number of crossings among the edges in
the top levels of the binary trees of M2 n . In the second step, we complete the proof
by inductively applying the result of the first step.

step : Let D be any drawing of M2 , in the plane. From this drawing, we can
construct a drawing D' of Kn2 in the following way. First locate the n2 leaves of the
binary trees of D. They will serve as the nodes for K,,2 . Given any pair (ij) and
(k,f) of these nodes, draw an edge from (iQ) to (k,i) along the unique path from (,j)
to (i,) in the ith row tree of D and then from (i,) to (kb in the lth column tree of D.
(in order that each edge not be drawn twice, we shall assume that i<k and, when
i= k, that j<L) As edges in D will be traced over several times by this procedure, it is
important to draw the edges of D' so that no pair cross each other more than once.

15



We next count the number of crossings in D'. There are two kinds of crossings

to consider. The first kind results from a crossing in D. More precisely, if e and e2

are edges of M 2 which cross in D and c is traced over s, times while e2 is traced

over s2 times, then the crossing of el and e2 will appear sis2 times in D'. This

phenomenon is illustrated in Figure 6.

12
duplicated
crossings o8

~~ S rgnal

81=4.[ e croesing es=3
e1 e2

Figure 6: Crossi-igs of /he first kind.

The second kind ot crossing results from edges of K,,2 which must cross while
traversing a common edge of . For example, see Figure 7. In what follows, we will
show that the number of crossings of the second kind is relatively small.

Figure 7: Crossings of the second kind

We say that an edge is ype i if it is in the iAi level of a binary tree of M2 .. It is
not difficult to show that each type i edge is traced over at most

n2"i(n2122t) :g 11326i
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times for any i<logn during the construction of D'. Thus at most n022i ' crosses of
the second kind can occur at any type i edge of D. Since there are 2i + In type i

edges in M2,n , we can conclude that the total number of crosses of the second kind

in D' is at most

j(2i+ In)(n62-2i-)) n7.2"i

n7 .

We next count the number of crossings of the first kind (i.e., those corresponding
to crosses in D). We say that a crossing of D is type i-j if it is the crossing of a type i

edge and a type j edge. Let t denote the number of type i-j crossings in D and set

ti = )--

Since each type i edge is traced over at most n32 i times, each type i-j crossing of D
produces at most

(n3-2)(n02J) = n62i-j

crosses of the first kind in D'. Thus the total number of crossings of the first kind in

D' is at most
A n62"i-Jtii < n62"2iti

i - Cc#

Summing, we find that the total number of crossings of either kind in D' is at
most

n 7 +! 1n6'2"2iti

By Lemma 1, this number must be at least

n2(n2-1Xn 2-2Xn 2-3)120 for n2 > 5.

Simplifying, we can conclude that

12"2ii > (n2-121nI12O for n>6.

Let sk= .ti be the number of crossings involving at least one edge from the
top k levels of some binary tree of M2.,. In what follows, we will use the preceding
inequality to show that sk (n2-121n)k/40 for at least one value of k2:1. Assume
otherwise and observe that
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f22i.i = 2"2i(Si.)

where so is defined to be 0. The coetfivient of cach si in this sum is positive so for
each i we may substitute (n2-121n)W,40 as an upper bound for si in order to see that

t i < [(n2-121MY4O] 2-2i~-(H-)]

= [(n2-"21n)40] 1!4-'

Since 14'1 : 1/3 for all n, we can conclude that
1 2"2it i < (02-12101/120

it

for all n>121, a contradiction. Thus for all n>121, there is a k>1 such that

sk > (n2-121n)/40.

step 2: Let QCn) denote the crossing number of M2 ,. Using the result of step 1,
we will now show by induction on n that C(n) > (n2logn - 121,12 +121n)/40 for all
n>1.

As (n2Iogn - 121n2+121n)140 is nonpositive for small n. the lower bound
trivially holds for all n128. Assume that the lower bound holds for all m"n where
n>128 and let D be any drawing for M2A,. By counting the crossings of D in two
groups according to whether or not at least one edge of the crossing is contained in
the top k levels of the binary trees of M2.,. we can observe that

C(n) > 22*C(nZ + Sk.

(Recall the definition of sk and the structure of Af2.1 .) By choosing k as in step I so
that sk > (n2-121n)k/40 and applying the inductive hypothesis for C(nZ , we
obtain

C(n) > 2?k[n 22"2k(ogn-ky4o - 121n22-2k/40 + 121n2k/40 + n2k/40- 12nk/40

> n2logn/40 - 121n 2/40 + 121n/40 + 121n(2k-k-1V/40

> (n2logn - 121n 2 + 121n)/40.

Thus the inductive hypothesis is established and we can conclude that the

crossing number of M2.,, is at least QT(n 2 logn)=U(NIogN) 0
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Theorem 4: Any drawing of the N-node r-dimensional mesh of trees contains an
edge which crosses at least U(N'"'r) other edges

Proof: The -dimensional nxnx... xn mesh of trees Mmr has N =

(r+ I)nr - rnr-l = O(n') nodes for bounded r. We will show that any drawing D of
Mr., contains an edge which crosses at least Q(nrt )=Q(NI' /r) other edges, thus
proving the theorem. The method used is very similar to that of Theorem 3.

As we did for the case of r= 2 in Theorem 3, we first construct a drawing D'of
the complete graph on the nr leaves of Mr.n. Each type i edge of D is traced over at
most nr+ 12"i times by this procedure. Thus the total number of crossings in D' is at
most

(rn3r+ 1)12 + n2r+ 25 7 2it

where, as before, ti=tii and ii. is the number of type i-j crossings in D. Applyingj~i -

Lemma 1, we can conclude that

Let sk= Dt i be the total number of crossings of D involving an edge from the top
k levels of the binary trees in Mrn • Using arguments similar to those used to prove

Theorem 3, it is not difficult to show that for large n, there exists a k such that
sk, > (n21'22k). As there are only rnIt(2k+ 1-2) edges in the top k levels of Mr.n
for any k, we can conclude that at least one of them crosses at least fQ(nrl) other
edges 3

4. Wire Area Arguments

As we have just seen, crossing number arguments can be very powerful in
establishing lower bounds on layout area and maximum edge length for VLSI
networks. Such arguments are also limited, however, to the kinds of results obtained
in the previous section. For example, in our thesis [18la], we show that the crossing
number of any N-node graph with an O(x,/ 2)-separator is at most O(NlogN). Thus,
we could not hope to improve the result of Theorem 3. Nor can crossing number
arguments be used to prove any nontrivial lower bounds for planar graphs.

The technique of using a drawing of a network to construct a drawing for the
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complete graph can be extended, however. In what follows, we use this technique to

find better lower bounds on the wire area of certain networks than were possible
with crossing number arguments alone. More precisely, we will show that the wire
area of the N-node 2-dimensional mesh of trees is at least Q(Nlog2N) and, as a
corollary, that the N-node (planar) tree of meshes has wire area at least i(NlogN).

In addition, we will show that the maximum edge length of the N-node 2-dimen-
sional mesh of trees is at least Q(N 1121ogN/1oglogN) while that of the N-node
augmented tree of meshes is at least (Q(N1' 2/og 1i2N).

Theorem 5: The wire area of ihe N-node 2-dimensional mesh of trees is at least
Q(Nlog2A).

Proof- As usual, we denote the nxn mesh of trees by M2 ,. In addition, let W(n)

denote the wire area of M 2,n and let a be a positive constant such that

(.) a < n/(41og2n) for all n> 2 and

a < 22i1-24120) for all i>1 where f j -2 is also a constant.
Jul

Clearly such a constant exists (a= 2-3 should suffice) and clearly W(n) _> an2 og2n
for n= I and 2. Consider a value of n>4 which is a power of 2 and assume that for

all values of m<n which are powers 2 that W(m) > am2log2in . We will use
induction to show that W(n) > an2log2n . Since M 2, has N=O(n2) nodes, this will
be sufficient to prove the theorem.

Consider any layout for M 2.n which uses W(n) wire. Partition the layout into
three vertical strips V0 , I, and V2 so that the center strip contains 3n2/4 leaves and
each outer strip contains n2/8 leaves. Similarly partition the layout into three
horizontal strips H o , H, and .H2 so that the middle strip contains 3n2/4 leaves

and each outer strip contains n2/8 leaves. For example, see Figure 8.

Let d denote the length of the longest side of the center block formed by the
intersection of V, and H, . Without loss of generality, we assume that the longest
side is horizontal. In what follows, we will show that d > (atl2nlogn)/8

Since each of the regions VonH, and Vpltl, can contain at most n2/8 leaves,
it is clear that VfnHj contains at least n2/2 leaves. Consider the n3"2 subgraphs
of M2.n produced by eliminating the top (31ogn)/4 levels of the row and column
binary trees of M2,n . Each of these subgraphs is isomorphic to Mnj14. By the
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Figure 8: Paruiioning of the layoutfor M2 ,.

pigeonhole principle, at least 1/2 of these subgraphs have at least one leaf in
Vinl H. If d < (at1 2nlogn)/8 (otherwise we are done), then at most
4d < (al"2nlogn)/2 edges can cross the boundary of Vjnftf . Thus at most
(a1 l 2nlogn)/2 of the subgraphs which have at least one leaf in VgirHi can also
have a node or part of an edge outside Vtrl' . This means that at least
(n3 2 - at 2nlogn)/2 copies of M2,n14 are wholly contained in V1nH,. Applying
the inductive, hypothesis, we conclude that VlnH contains at least

(n312 . a 112nlogn) W(n1 4)/ 2 (an2log2 - a3" 2n312Iog3n)/32

, (an2log2n)/64 wire.

The last inequality follows trivially from (. Thus VfnHj has at least
(an2log2n)/64 area and d > (al/2nlogn)8 , as claimed.

We next use the (Thompson model) layout for M2 ,, to construct a drawing for
the complete graph on n2 nodes (namely, the n2 leaves of M2M ). No matter how the
edges of the complete graph are drawn in the plane (e.g., they may cross or overlap),

it is clear from Figure 8 that the sum of the lengths of all the edges (as measured in
Euclidean space) is at least n4d/64 >_ (al/2nSlogn)2Q. This is due to the fact that

n4/64 edges pass fromn region Vo to region V2 and that these regions are separated

by a distance d.

Let Li denote the sum of the lengths of the edges in the ith levels of the binary
trees of AZn. Since every level i edge is traced over at most n32 i times in the
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drawing of the complete graph, we can conclude that

SL12'n3 > (a '/2nl5 ogn),2 9
ritn I

and thus that
4 Li2"i (al/12n21ogn)/29.

In particular, this means that
Li ; (all2n2logn2V)(29fli2)

for some i< logn . (Recall that j , = -2 .) Odlerwise,
jt e

Li < (aI/2n21ogn2i)/(2oflii)

for I < i < Iogn and thus

IL. i < 2(al/2n2ogn)/(29fli)

< (a//2n21ogn)/2, a contradiction.

Using the straightforward relation

W(n) > 22iW(n2i) + Li

where i has been chosen so that

Li > (a 1 2II21ogn2)/(2 9fi 2),

we can conclude that

WKn) > 22ia(n2")2(Iogn - 1)2 + (al' 2n2logn2(2 9fl9)

> an2log2n- 2ain2logn + (a11 2n2Iogn2)429&i6 )

an21og2n

The last inequality follows trivially from (**). Thus W(n) > 0(n2log2n) for all n 3

Theorem 6: The wire area of the N-node tree of meshes is at least I(NlogN).

Proof. As we showed in section 2c of this paper, the N-node 2-dimensional mesh

4 of trees can be embedded in an O(NlogN)-node tree of meshes. From Theorem 5,
we can thus conclude that the wire area of the (NlogN)-node tree of meshes is at
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least fl(Nlog2N). Equivalently, the wire area of the N-node tree of meshes is at least
U(NlogN) 0

Theorem 7: Any layout of the N-node augmented tree of meshes contains a wire of
length at least U(N/ 2/log'1 2N).

Proof- In the proof of "'heorem 5, we showed that any layout of M2.n must have
two leaves which are spaced at least U(nlogn) distance apart. Since M2., can be
embedded in T2n so that the leaves of Af,, are embedded in or near the leaves of
T2, (see the embedding in section 2c), we can observe that any layout of T2n must
also have two leaves which are spaced at least (nlogn) distance apart. Since any

qpair of leaves in T2, are linked by a path of length at most O(Iogn) in T2.', we can
conclude that some edge of T2n' must have length at least U(n)= U2(NI1 2/log"12N) o

It is worthwhile to point out that we could have proved both Theorems 6 and 7
directly, using argumcnts similar to the ones used to prove Theorem 5.

Theorem 8: Any layout of the N-node 2-dimensional mesh of trees contains a wire
of length at least Q(N/ 21ogN/logogN).

Proof- It is sufficient to show that any layout for M2n contains a wire of length
at least S2(nlogn/log/ogn). Assume for the purposes of contradiction that this is not
the case and consider a layout of M2,11 for which the longest wire has length
q <_ o(nlogn/loglogn). We first show that (without loss of generality) the area of
such a layout is at most O(q2log2n) < o(n2log4n)

Since every pair of nodes of M2.n is linked by a path of length at most 41ogn, all
of the nodes in the layout are contained in a 4qlogn x 4qlogn square. At most
16qlogn wires may leave and re-erter the square at various points along its perimeter.
Without increasing the lengths of any of these wires, it is possible to rewire the
segments outside the square using at most O(q2log2n) additional area. Thus, the
resulting layout for M2 ,n will have maximum edge length q and area at most

O(q2log2 n).

The proof is completed by observing that any layout of M2, with area o(n2Iog4n)
must have a wire of length at least U(nlogn/loglogn). From the proof of Theorem 5,
we know that

1Li2"- 'a (all2n2logn)y/29 .
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Thus either

1) there is an i < 41oglogn such that

Li > (a 1 2n21ogn2')/(212oglogn), or

2) there is an i > 41oglogn such that
Li :(at/12n21ogn2i) 1/(21°fli)

where, as before, the constant /3= j -2. Otherwise,

# +&' * S' ', 7 v qj, a

< (a"2n2Iogy210 + [(a.1 2n2logy2103j Xr 2

:g (a t/2n2logn)/2 9 , a contradiction.

The second condition cannot possibly be true, however. If it were, the area of the
layout would be at least Li > (Q(n2logn2'/i 2) which, for i > 41oglogn, means that

A > fl(n2log~n/(logtogn))

> 11(nl2 ogn), acontradiction.

Thus the first condition must be true and there is an i such that
Li >_ f2(n2logn2i/loglogn). Since there are n2i+1 type i edges in M2,, , we can
conclude that at least one of them has length at least UI(niogn/loglogn) 0

5. Remarks

(a) In addition to being good lower bounds for layout area, the crossing number
and wire area of a network are interesting in their own right. In particular, both are
worth minimizing when designing a chip. For instance, a chip with a large number
of crossings may have problems with capacitive coupling (i.e., interference between
overlapping wires); particularly if some of the wires cross an unusually large number

of the other wires (as was the case with the r-dimensional mesh of trees). The wire
area is worth minimizing in order to maximize the chip yield. As many chips are
ruined by localized random errors, chips with lower wire density will be less likely to
be affected by such problems.
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(b) Unfortunately, our results indicate that both the crossing number and the
wire area are usually as large (up to a constant) as the area of the layout. In fact, all

of the previously known nontrivial lower bounds for layout area are also lower
bounds for crossing number and wire area. This is due to the fact that the previously
known lower bounds for layout area were proved as a consequence of the identity
A > O(B2). Since we showed in Theorem 1 that C+ N > O2(B-"), the same bounds

also hold for crossing number and wire area. For example, this means that any
layout of a network which computes an N-point Fourier transform in T steps must

have 12(N 2/T2) wire crossings. Hence, we could thus conclude that the N-node
shuffle exchange graph and the N-node cube-connected-cycles graph have crossing
number UWN2 f(og2N).

(c) The previous analysis can often be cartied one step further in order to show

that some wires in a layout must cross many other wires. For example, any network
which computes an N-point Fourier transfor'm in T steps must have a wire which
crosses fU(NIT-) other wires. This is because the network contains O(N) wires but

has at least Q(N2/T2) crossings. In particular, this means that any layout of the N-
node shuffle-exchange graph or the N-node cube-connected cycles graph contains a
wire which crosses U(N/log2N other wires.

(d) The techniques developed in this paper can also be used to reprove other
results in the literature. For example, Brent and Kung showed in [BK80] that any
layout of the complete N-node binary tree in which the leaves are contained on the
boundary of some convex region requires at least Q(NlogN) wire area. Subsequently

Patterson, Ruzzo and Snyder [PRS81] showed that any such layout with area A must
have some wire of length U2(N/Ilog(A/N)). As we show in [Lla], both of these
results can be simply proved using the techniques used to prove Theorems 5 and 8.

(e) The methods which we have used to prove crossing number and wire area
lower bounds can also be used to prove bisection width lower bounds. For example,

these techniques can be easily used to show that the bisection width of the N-node
shuffle-exchange graph is at least (U(N/logN) [L81a]. In this case the construction of
the complete graph from the drawing of the shuffle-exchange graph bears a strong
resemblance to Thompson's [T801 information flow arguments. In fact, it appears
that many of Thompson's lower bounds can be reproved in this fashion.
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(I) When defining the 2-dimensional mesh of trees in section 2a, we required

that the binary trees be constructed so that M21 contain 22k disjoint copies of M 2•n2k

as subgraphs for any k. It is interesting to note that networks which do not satisfy

this constraint but which are similar to the 2-dimensional mesh of trees in all other

respects have essentially the same computational power as the more restricted mesh

of trees. Theorems 3, 5 and 8 do not necessarily apply to such networks, however.

In fact, we do not know if the same wire area lower bound need still apply. Using a

somewhat different method, however, we have shown in [L81a] that any such

network must still have a large crossing number. As a key step in the proof, we

generalize Lemma 1 to show that any N-node graph with E edges has crossing

number at least (Q(EI/N) whenever E > 4N

(g) The area required to lay out the r-dimensional mesh of trees is very close to

that required to lay out the standard mesh of the same size. For example, for r>2 the

amount of area required for the mesh of trees, O(n', is at most a constant times as

large as the area required for the standard i-dimensional mesh. Thus the

computational power of the standard mesh can be greatly enhanced at little or no

cost in layout area by adding the edges of the mesh of trees.

(h) The i-dimensional mesh Of trees was defined as a natural generalization of

the computationally powerful 2-dimensional mesh of trees. MrAt can also be viewed

as a generalization of the r-cube, also a very powerful communications network.

(For example, Mr,2 is an r-cube with every edge replaced by a path of length 2.)

Viewed in this light, the i-dimensional mesh of trees motivates the definition of a

shuffle-tree graph in the same way that the r-cube motivates the definition of the

shuffle-exchange graph. We would be interested to know if there any practical

applications of such a general comunications network.

(i) Using standard techniques, it is not difficult to show that all of the asymptotic

lower bounds proved in Theorems 3-8 are tight (although it is likely that the leading

constants can be substantially improved). In addition, the drawings and layouts

which achieve the lower bounds for crossing number and wire area also achieve the

lower bounds for maximal edge crossing and edge length. Thus there are no

area/edge length tradeoffs for these networks.

(I) After writing the initial version of this paper, we became aware of several

other papers which describe parallel computation algorithms using the mesh of trees.
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For example:

1) Nath, Maheshwari and Bhatt [NM g811 have used the network (which they call
the orthogonal trees network) for sorting, discrete Fourier transform, minimum

spanning tree, and connected components (as well as many other) problems,

2) Cappello and Steiglitz [CS81] have used the network (which they call the
orthogonal foress) for integer multiplication, and

3) Gannon [G81] has used the network to find approximate solutions to systems

of partial differential equations.

(k) Subsequent to the final writing of this paper, a great deal more was
discovered about upper and lower bounds for layout area and crossing number. As a
forward pointer, we refer the interested reader to [1,821. Interestingly, no further
progress has been made on the planar layout problem.
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